
Control Systems : Set 12 : Statespace (3) - Solutions
Prob 1 | The linearized equations of motion of the simple pendulum in the figure below are

θ̈ + ω2θ = u7058 CHAPTER 7. STATE-SPACE DESIGN

Figure 7.96: Pendulum diagram for Problem 7.46.

estimator characteristic equations are,

!e;desired(s) = (s+ 2!)(s+ 3!)(s+ 3! ! j3!)(s+ 3! + j3!)
= s4 + 11!s3 + 54!2s2 + 126!3s+ 108!4

!e(s) = det(sI!A+ LC) = s4 + l3s3 + (l4 + !2)s2 + (!2!l2 + !2l3)s+ (!3!2l4 ! 6!3l1):

Equating coe¢cients gives,

l1 = !44:5!; l2 = !57:5!2; l3 = 11!; l4 = 53!2:

46. The linearized equations of motion of the simple pendulum in Fig. 7.96 are

1( + !2( = u:

a) Write the equations of motion in state-space form.

b) Design an estimator (observer) that reconstructs the state of the pendulum given measure-

ments of _(. Assume ! = 5 rad/sec, and pick the estimator roots to be at s = !10" 10j.
c) Write the transfer function of the estimator between the measured value of _( and the esti-
mated value of (.
d) Design a controller (that is, determine the state feedback gain K) so that the roots of the
closed-loop characteristic equation are at s = !4" 4j.
Solution:

(a) DeÖning x1 = ( and x2 = _(, and anticipating that the measured variable in part (b) is _(, we
have,

!
_x1
_x2

"
=

!
0 1
!!2 0

" !
x1
x2

"
+

!
0
1

"
u;

y =
#
0 1

$
x:

(b) From,

det(sI!A+ LC) = 0;

det

%!
s 0
0 s

"
!
!

0 1
!!2 0

"
+

!
l1
l2

" #
0 1

$&
= s2 + l2s+ !

2(!l1 + 1) = 0:
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a) Write the equations of motion in state-space form.

Defining x1 = θ and x2 = θ̇, and anticipating that the measured variable in part (2)
is θ̇, we have [

ẋ1
ẋ2

]
=

[
0 1

−ω2 0

] [
x1
x2

]
+

[
0

1

]
u

y =
[
0 1

]
x

b) Design an estimator (observer) that reconstructs the state of the pendulum given measure-
ments of θ̇. Assume ω = 5 rad/sec, and pick the estimator roots to be at s = −10± 10j .

Characteristic equation is given by

det (sI − A+ LC) = 0

det

([
s 0

0 s

]
−
[
0 1

−ω2 0

]
+

[
L1
L2

] [
0 1

])
= L2s − L1ω2 + ω2 + s2 = 0

Equate to the desired characteristic equation, and solve

L2s − L1ω2 + ω2 + s2 = s2 + 20s + 200

The result is

L =

[
−7
20

]

c) Write the transfer function of the estimator between the measured value of θ̇ and the
estimated value of θ.



To find the transfer function from the measured value of θ̇, y , to the estimated value
of θ, θ̂, we use the estimator equations

˙̂x = Ax̂ + Bu + L(y − Cx̂)
= (A− LC)x̂ + Bu + Ly

We now convert this to a transfer function form to get the transfer function from the
input to this system, y , to the output θ̂ = x̂1

Θ̂(s)

Y (s)
=

[
1 0

]
(sI − A+ LC)−1L

= −
7s − 20

s2 + 20s + 200

d) Design a controller (that is, determine the state feedback gain K) so that the roots of the
closed-loop characteristic equation are at s = −4± 4j .

For the controller gain K =
[
K1 K2

]
, we require

det (sI − A+ BK) = 0 → s2 +K2s + ω
2 +K1 = 0

The desired characteristic equation is

(s + 4 + 4j)(s + 4− 4j) = s2 + 8 ∗ s + 32

Equating coefficients and solving gives K =
[
7

8

]



Prob 2 | A certain process has the transfer function

G(s) =
4

s2 − 4

a) Find A, B and C for this system in observer canonical form

The observer canonical form can be read directly from the transfer function

A =

[
0 1

4 0

]
B =

[
0

4

]
C =

[
1 0

]

b) If u = −Kx , compute K so that the closed-loop control poles are located at s = −2± 2j

The desired characteristic equation is

α(s) = (s + 2− 2j)(s + 2 + 2j) = s2 + 4s + 8

and the characteristic equation of the closed-loop system

det (sI − A+ BK) = s2 + 4 ∗K2 ∗ s + 4 ∗K1 − 4

Equating coefficients and solving gives K =
[
3 1

]
c) Compute L so that the estimator-error poles are located at s = −10± 10j

The desired characteristic equation is

αe(s) = (s + 10 + 10j)(s + 10− 10j) = s2 + 20s + 200

and the characteristic equation of the estimator is

det (sI − A+ LC) = s2 + L1s + L2 − 4

Equating coefficients and solving gives L =
[
20

204

]

d) Give the transfer function of the resulting controller

The transfer function is

K(s) = −K(sI − A+ LC + BK)−1L

= −
[
3 1

] [s + 20 −1
212 s + 4

]−1 [
20

204

]
=
−264s − 692
s2 + 24s + 292



To check this answer, one can use the ss2tf command in Matlab

e) What are the gain and phase margins of the controller and the given open-loop system?

The loop gain is given by

K(s)G(s) =
264s + 692

s2 + 24s + 292
·
4

s2 − 4

We can see the Nyquist plot for this system below from which we notice that the
system has both a positive and negative gain margin - the gain can be increased by 5
times, or decreased by 0.41 times before the system becomes unstable.
From the plot, we can also see that the phase margin is about 35◦
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Prob 3 | Consider the control of

G(s) =
Y (s)

U(s)
=

10

s(s + 1)

a) Let y = x1 and ẋ1 = x2 and write the state equations for the system

Write the ODE

ÿ + ẏ = u

Define the state variables x1 = y , x2 = ẋ1 = ẏ and we can give the state equations as[
ẋ1
ẋ2

]
=

[
0 1

0 −1

] [
x1
x2

]
+

[
0

10

]
u

y =
[
1 0

]
x

b) Find K1 and K2 so that u = −K1x1−K2x2 yields closed-loop poles with a natural frequency
ωn = 3 and a damping ratio ζ = 0.5

Desired characteristic equation

αc(s) = s
2 + 2ζωns + ω

2
n

= s2 + 3s + 9

Closed-loop characteristic equation

det (sI − A+ BK) = 10K1 + s + 10K2s + s2

Equating coefficients and solving gives K =
[
9
10

1
5

]
c) Design a state estimator for the system that yields estimator error poles with ωn1 = 15

and ζ1 = 0.5

Running the code below, we get that L =
[
14

211

]
wn = 15
zeta = 0.5
A = [0 1 ;0 - 1 ] ;
B = [ 0 ; 1 0 ] ;

5 C = [1 0 ] ;
L = place (A’ , C’ , root s ( [ 1 2* zeta *wn wn^2 ] ) ) ’

d) What is the transfer function of the controller obtained by combining parts (a) - (c)?



% Compute transfer function
c t r l = ss (A-L*C-B*K, L , -K, 0)
t f ( c t r l )

5 ans =

-54.8 s - 202.5
- - - - - - - - - - - - - - - -
s ^2 + 17 s + 262



Prob 4 | The linearized longitudinal motion of a helicopter near hover (figure below) can be modeled by
the normalized third-order systemq̇θ̇

u̇

 =
−0.4 0 −0.01
1 0 0

−1.4 9.8 −0.02

qθ
u

+
6.30
9.8

 δ
where

q = pitch rate
θ = pitch angle of fuselage
u = horizontal velocity (standard aircraft notation)
δ = rotor tilt angle (control variable)7062 CHAPTER 7. STATE-SPACE DESIGN

Figure 7.97: Helicopter for Problem 7.49.

normalized third-order system,
2

4
_q
_"
_u

3

5 =

2

4
!0:4 0 !0:01
1 0 0

!1:4 9:8 !0:02

3

5

2

4
q
"
u

3

5+

2

4
6:3
0

9:8

3

5 %;

where,

q = pitch rate;

" = pitch angle of fuselage;

u = horizontal velocity (standard aircraft notation);

% = rotor tilt angle (control variable):

Suppose our sensor measures the horizontal velocity u as the output; that is, y = u.
a) Find the open-loop pole locations.
b) Is the system controllable?
c) Find the feedback gain that places the poles of the system at s = !1" 1j and s = !2.
d) Design a full-order estimator for the system, and place the estimator poles at !8 and !4"
4
p
3j.

e) Design a reduced-order estimator with both poles at !4. What are the advantages and
disadvantages of the reduced-order estimator compared with the full-order case?
f) Compute the compensator transfer function using the control gain and the full-order estimator
designed in part (d), and plot its frequency response using Matlab. Draw a Bode plot for the
closed-loop design, and indicate the corresponding gain and phase margins.
g) Repeat part (f) with the reduced-order estimator.
h) Draw the symmetrical root locus (SRL) and select roots for a control law that will give a
control bandwidth matching the design of part (c), and select roots for a full-order estimator
that will result in an estimator error bandwidth comparable to the design of part (d). Draw
the corresponding Bode plot and compare the pole placement and SRL designs with respect to
bandwidth, stability margins, step response, and control e§ort for a unit-step rotor-angle input.
Use Matlab for the computations.

Solution:
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Suppose our sensor measures the horizontal velocity u as the output, that is y = u
Use Matlab to answer the following questions.

a) Design a state estimator with poles at −8 and −4± 4
√
3j

b) Compute the compensator transfer function using control you design for this problem in
exercise set 5, and the estimator designed above.

c) Draw Bode plots for the loop gain and the closed-loop system. What is the bandwidth,
gain margin and phase margin?

c l e a r

A = [ - 0 . 4 0 - 0 . 01 ; 1 0 0 ; -1 .4 9 .8 - 0 . 0 2 ] ;
B = [ 6 . 3 ; 0 ; 9 . 8 ] ;

5 C = [0 0 1 ] ;

G = ss (A,B,C, 0 ) ;

% Design estimator
10 p = [ -8 , -4+4* sqr t (3)* j , -4 -4* sqr t (3)* j ] ;

L = place (A’ , C’ , p ) ’



L =

15 44.71
18.813
15.58

e i g (A-L*C) % Check result
20

ans =

-8 + 0 i
-4 + 6.9282 i

25 -4 - 6.9282 i

% Control from previous exercise
K = [0 . 4 7 1 0 . 0 6 3 ] ;

30 % Compute the compensator
c t r l = t f ( s s (A-L*C-B*K, L , K, 0))

c t r l =

35 40.81 s^2 + 61.02 s + 32.01
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
s ^3 + 19.58 s^2 - 210.2 s + 814

% Bode plot − loop gain
40 f i g u r e (1)

margin ( c t r l *G)
[Gm,Pm,Wcg,Wcp] = margin ( c t r l *G)

Gm =
45

0.73889

Pm =
50

22.022

Wcg =
55

6.9471

Wcp =
60

11.721

% Close−loop bode plot



f i g u r e (2)
65 bode ( feedback ( c t r l *G, 1))

bandwidth ( feedback ( c t r l *G, 1))

ans =
70

2.0007

% Controller





Bode plot of loop gain

KG = Blue
G = Black
K = Orange
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Closed-loop bode plot
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Prob 5 | The linearized equations of motion for a satellite are

ẋ = Ax + Bu

y = Cx

where

A =


0 1 0 0

3ω2 0 0 2ω

0 0 0 1

0 −2ω 0 0

 B =


0 0

1 0

0 0

0 1

 C =

[
1 0 0 0

0 0 1 0

]

u =

[
u1
u2

]
y =

[
y1
y2

]
The inputs u1 and u2 are the radial and tangential thrusts, the state variables x1 and x3 are the
radial and angular deviations from the reference (circular) orbit, and the outputs y1 and y2 are
the radial and angular measurements, respectively.

a) Show that the system is controllable using both control inputs

Compute the controllability matrix

C =
[
B AB A2BA3B

]
=


0 0 1 0 0 2ω −ω2 0

1 0 0 2ω −ω2 0 0 −2ω3
0 0 0 1 −2ω 0 0 −4ω2
0 1 −2ω 0 0 −4ω2 2ω3 0


Looking at the first four columns, we note that we have a full rank matrix, and so the
system is controllable.

b) Show that the system is controllable using only a single input. Which one is it?

Compute the controllability matrix for each input / column of the matrix B.

First input : B =
[
0 1 0 0

]T

C =


0 1 0 −ω2
1 0 −ω2 0

0 0 −2ω 0

0 −2ω 0 2ω3


Computing the determinant of this matrix gives zero, which tells us that the system
is uncontrollable.
Second input : B =

[
0 0 0 1

]T

C =


0 0 2ω 0

0 2ω 0 −2ω3
0 1 0 −4ω2
1 0 −4ω2 0





Computing the determinant gives −12ω4, which tells us that the controllability matrix
is full rank for all ω, and therefore the system is controllable.

c) Show that the system is observable using both measurements.

Compute the observability matrix

O =


C

CA

CA2

CA3

 =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

3ω2 0 0 2ω

0 −2ω 0 0

0 −ω2 0 0

−6ω3 0 0 −4ω2


Where we notice from the first four rows that this system is observable.

d) Show that the system is observable using only one measurement. Which one it it?

Compute the observability matrix for each output / row of the matrix C.
First output C =

[
1 0 0 0

]

O =


1 0 0 0

0 1 0 0

3ω2 0 0 2ω

0 −ω2 0 0


We see from the third column that this matrix is not full rank, and therefore the
system is not observable.
Second output C =

[
0 0 1 0

]

O =


0 0 1 0

0 0 0 1

0 −2ω 0 0

−6ω3 0 0 −4ω2


Calculating the determinant, we get −12ω4, which tells us that the matrix is full-rank
for all non-zero ω.

Note that the definitions of controllability and observability matrices are valid for multiple in-
puts and outputs, and that full rank of these matrices is what’s required for controllability and
observability.



Prob 6 | Consider a system with the transfer function

G(s) =
9

s2 − 9
a) Find (A,B, C) for this system in observer canonical form

For a transfer function

G(s) =
b1s + b2

s2 + a1s + a2

the observer canonical form becomes

A =

[
−a1 1

−a2 0

]
=

[
0 1

9 0

]
B =

[
b1
b2

]
=

[
0

9

]
C =

[
1 0

]
b) Is (A,B) controllable?

Check the rank of the controllability matrix

C =
[
B AB

]
=

[
0 9

9 0

]
The determinant is −81, and so the system is controllable.

c) Compute K so that the closed-loop poles are assigned to s = −3± 3j

We use Matlab’s place function to calculate K =
[
3 2

3

]
d) Is the system observable?

The system is in observer canonical form, and therefore it is observable.

e) Design an estimator with estimator poles at s = −12± 12j

det (sI − A+ LC) = s2 + L1 ∗ s + L2 − 9 = s2 + 24 ∗ s + 288

Gives L =
[
24

297

]

f) Suppose the system is modified to have a zero

G1(s) =
9(s + 1)

s2 − 9
Prove that if u = −Kx + r , there is a feedback gain K that makes the closed-loop system
unobservable. (Again assume an observer canonical realization for G1(s).)



The observer canonical form is

A =

[
0 1

9 0

]
B =

[
9

9

]
C =

[
1 0

]
Given a state-feedback controller of the form K =

[
K1 K2

]
, the closed-loop observ-

ability matrix is

O =
[
C

C(A − BK)

]
=

[
1 0

−9K1 1− 9K2

]
which has a determinant of 1 − 9K2. We can therefore make the closed-loop system
unobservable by choosing K2 = 1

9 .
The poles of the closed-loop system for K2 = 1

9 are given by

det (sI − A+ BK) = det
[
9K1 + s 0

9K1 − 9 s + 1

]
= (9K1 + s)(s + 1)

So we see that the system has become unobservable due to a pole-zero cancellation.


